Μπαταρία, αυτή η άγνωστη...
Συντάχθηκε απο τον/την Administrator   

 

Σημείωση: ΔΙΑΒΑΣΤΕ ΟΛΟΙ ΤΗΝ ΣΩΣΤΗ ΔΙΑΔΙΚΑΣΙΑ ΕΚΚΙΝΗΣΗΣ ΤΟ ΚΙΝΗΤΗΡΑ ΜΕ ΜΙΖΑ, ΣΤΟ ΤΕΛΟΣ ΤΟΥ ΑΡΘΡΟΥ --->

 

 

Μπαταρία η γνωστή μας άγνωστη...

 

(Του Τάσου Πορτοκάλογλου - Διπλ. Ηλεκτρονικού Ηλεκτρολόγου Μηχανικού)

 

Ένα από τα βασικά εξαρτήματα σε ένα όχημα είναι η μπαταρία ίσως θα έλεγα και το σπουδαιότερο αφού χωρίς αυτήν δεν μπορεί να λειτουργήσει σχεδόν τίποτα.

Η πανάκριβη μηχανή μας δεν μπορεί να πάρει μπρος ούτε να λειτουργήσουν τα ηλεκτρονικά βοηθήματα χωρίς αυτήν μιας και είναι η βασική συνεχής πηγή ηλεκτρικής ενέργειας στο οχημά μας.

Τι γνωρίζουμε όμως γι’αυτήν;

 

 

 

Πιστεύω ότι οι περισσότεροι από εμάς γνωρίζουμε πολύ λίγα πράγματα όσο αφορά τον τρόπο λειτουργίας της την συντήρηση της καθώς με ποια κριτήρια πρέπει να επιλέξουμε την κατάλληλη μπαταρία για το σκάφος μας το οποίο έχουμε εξοπλίσει με ηλεκτρικούς εργάτες, ψυγεία, στερεοφωνικά και πολλά αλλά που για να λειτουργήσουν έχουν ανάγκη ηλεκτρικής ενέργειας.

 

 

Γενικά Χαρακτηριστικά

Το Ελληνικό όνομα είναι Συσσωρευτής ηλεκτρικής ενέργειας , (το όνομα μπαταρία είναι από το Ιταλικό Batteria που σημαίνει συστοιχία, και αυτό προέρχεται από το Batteria di accumulatori = Συστοιχία συσσωρευτών), Η μπαταρία είναι ένα ηλεκτρικό εξάρτημα ικανό να αποθηκεύει ηλεκτρισμό υπό μορφή χημικής ενέργειας. Η απόδοση της εξαρτάται από τον τύπο κατασκευής της (απόδοση είναι το ποσόν επί της εκατό της χημικής ενέργειας που μετατρέπεται σε ηλεκτρική.

Το ιδανικό είναι όταν 100% της χημικής ενέργειας μετατρέπεται σε ηλεκτρική, αλλά αυτό δεν συμβαίνει.)

Μια κλασική μπαταρία μολύβδου με ηλεκτρολύτη διάλυμα θειικού οξέος έχει απόδοση 75%, ενώ μια μπαταρία κλειστού τύπου τζέλ μπορεί να φθάσει απόδοση 95%.

 

Ας δούμε όμως πως είναι κατασκευασμένη μια μπαταρία μόλυβδου.

Αυτή αποτελείται από μια σειρά στοιχείων οπου το κάθε ένα από αυτά έχει ηλεκτρεγερτική δύναμη (Τάση χωρίς φορτίο) όταν είναι τελείως φορτισμένο 2,2 Volt, έτσι λοιπόν για μια μπαταρία 12 Volt ονομαστική τάση θα χρειαστούμε 6 τέτοια στοιχεία 6Χ2,2=13,2 Volt.

Το κάθε ένα από αυτά τα στοιχεία αποτελείται από μια πλάκα ενεργού μολύβδου Pb για τον θετικό πόλο, και μια πλάκα διοξειδίου του μολύβδου PbO2 για τον αρνητικό πόλο.Τα στοιχεία αυτά είναι βυθισμένα σε ένα ηλεκτρολύτη διάλυμα θειικού οξέος H2SO4 και αποσταγμένου νερού H2O και λαμβάνει χώρα η παρακάτω αμφίδρομη αντίδραση

 

PbO2 + 2H2SO4+Pb 2PbSO4 + 2H2O + 2(96.500) Cοulomb

 

Στην παρακάτω εικόνα βλέπουμε σε τομή μια μπαταρία και έχουμε:

 

battery cutout

 

1- Το κέλυφος

2- Τις πλάκες εσωτερικά θετικές και αρνητικές από μόλυβδο και οξείδιο του Μολύβδου

3- Διαχωριστικές πλάκες από συνθετικό υλικό

4- Τον ηλεκτρολύτη, διάλυμα θειικού οξέος σε νερό

5- Τους πόλους από μόλυβδο, Οι πόλοι είναι τα σημεία σύνδεσης της μπαταρίας με τα φορτία.

 

Κατά την κανονική λειτουργία από χημική αντίδραση του θειικού οξέος με τα μολύβδινα στοιχεία παράγεται μικρή ποσότητα υδρογόνου και οξυγόνου. Αυτά τα δύο αέρια που παράγονται στον ένα πόλο της μπαταρίας απορροφόνται από τις χημικές αντιδράσεις του αντιθέτου πόλου.

Εάν όμως κακομεταχειριζόμαστε την μπαταρία η ισορροπία αυτή χαλάει δημιουργούνται μεγάλες ποσότητες αερίων η μπαταρία υποφέρει και λέμε τότε ότι η μπαταρία "βράζει".

 

 

 

Τύποι Μπαταριών

Οι μπαταρίες διαφέρουν ανάλογα για ποιο σκοπό είναι κατασκευασμένες. Έχουμε λοιπόν της μπαταρίες αυτοκινήτου, τις Marine, Κυκλικές κλπ

 

Μπαταρίες αυτοκινήτου

Είναι κατασκευασμένες για να έχουν κύκλους φόρτισης εκφόρτισης κατά μέσο όρο 5% της ολικής φόρτισης. Υποφέρουν εάν αδειάσουν πολύ και για μεγάλο χρονικό διάστημα, αλλά έχουν την δυνατότητα να παρέχουν υψηλά στιγμιαία ρεύματα για την εκκίνηση των κινητήρων και είναι αρκετά ελαφριές. Συνήθως αντέχουν μερικές δεκάδες (τυπικά 50) κύκλους φόρτισης εκφόρτισης σε 80%.

 

Marine

Είναι μια μέση οδός μεταξύ των μπαταριών αυτοκινήτου και των Κυκλικών, έχουν σχεδιαστεί για κύκλους εκφόρτισης έως 50% και μπορούν να δώσουν υψηλά ρεύματα. Το κέλυφος είναι κατασκευασμένο ώστε να αντέχει την ταλαιπωρία της θάλασσας και ο ηλεκτρολύτης να μη διαφεύγει όταν η μπαταρία παίρνει μεγάλες κλίσεις.

 

Κυκλικές

Eίναι κατασκευασμένες για να παρέχουν ενέργεια για μεγάλα χρονικά διαστήματα Ο μέσος ορός εκφόρτισης είναι 80% και αντέχουν από μερικές εκατοντάδες έως και 1000 κύκλους φόρτισης/εκφόρτισης

 

 

Μπαταρίες μόλυβδου κλασικές

 

Είναι εκείνες με τις τάπες που ξεβιδώνουν για να προσθέσουμε αποσταγμένο νερό. Οι τάπες έχουν μια μικρή τρύπα για τα αέρια που δημιουργούνται.

 

 

Μπαταρίες χωρίς συντήρηση ή κλειστού τύπου

 

Είναι οι περισσότερο διαδεδομένες σήμερα. Δεν υπάρχουν οι τάπες με την τρύπα αν και με λίγη προσπάθεια μπορείς να ανοίξεις το στοιχείο να προσθέσεις νερό και να μετρήσεις την πυκνότητα του ηλεκτρολύτη. Χάρις στο σύστημα κλεισίματος των στοιχείων αν αναποδογυρίσουν για μικρό χρονικό διάστημα δεν χάνουν τα υγρά.

 

 

Μπαταρίες Στεγανές ή GEL

 

Ο ηλεκτρολύτης είναι σε μορφή Τζελ και το κιβώτιο είναι τελείως στεγανό υπάρχει όμως μια βαλβίδα ασφαλείας για την περίπτωση που θα δημιουργηθούν πολλά αέρια. Αυτές οι μπαταρίες δεν πρέπει να ανοιχθούν ποτέ, δεν αντέχουν μεγάλες υπερφορτίσεις γιατί οι φυσαλίδες που δημιουργούνται παραμένουν μέσα και εμποδίζουν την επαφή του ηλεκτρολύτη με τις πλάκες με συνέπεια την μείωση της χωρητικότητας της μπαταρίας.

Συχνά προστίθενται διάφορες χημικές ουσίες ώστε να μετατρέπουν οι φυσαλίδες σε υγρό ώστε να ανέχονται σχετικά υπερφορτίσεις. Είναι πολύ ακριβές αλλά εάν τις μεταχειριζόμαστε καλά έχουν μεγαλύτερη διάρκεια ζωής από τις κοινές μπαταρίες Εάν όμως δεν τις προσέξουμε κρατάνε λιγότερο.

 

 

 

Αριθμοί που υπάρχουν στις Μπαταρίες

 

Ας προσπαθήσουμε τώρα να καταλάβουμε τι σημαίνουν οι αριθμοί που αναγράφονται στις μπαταρίες.

 

ΟΝΟΜΑΣΤΙΚΗ ΤΑΣΗ: είναι τα Volt που μπορούμε να μετρήσουμε στους πόλους με ένα βολτόμετρο και την μπαταρία χωρίς φορτία που καταναλώνουν ρεύμα.

 

ΟΝΟΜΑΣΤΙΚΗ ΧΩΡΗΤΙΚΟΤΗΤΑ: Είναι η ποσότητα της ενέργειας που η μπαταρία μπορεί να αποθηκεύσει μετριέται σε Amper /Ώρα Αh σε εκφόρτιση 1 ώρας 5 ωρών, 10 ωρών ή 20 ωρών ανάλογα με τα στοιχεία που δίνει ο κατασκευαστής.

 

ΡΕΥΜΑ ΑΙΧΜΗΣ: είναι το μέγιστο ρεύμα που η μπαταρία μπορεί να δώσει όταν είναι κρύα για περίπου 30 δευτερόλεπτα (συνήθως αναφερόμαστε σε 0 C0 ή –18 C0 στις χειρότερες συνθήκες Όσο η τιμή αυτή είναι μεγαλύτερη τόσο η μπαταρία είναι σε θέση να βάλει μπρος τον κινητήρα κάτω από δύσκολες συνθήκες.

Για να βρω τα αναγκαία Amper ώστε να εκκινήσω ένα κινητήρα πρέπει να πολλαπλασιάσω την ιπποδύναμη του με τον αριθμό 3,85. εάν όμως πολλαπλασιάσω τα ampere που η μπαταρία μου δύναται να γεννήσει στην θερμοκρασία των -18 C με τον αριθμό 0.26 βρίσκω μέχρι ποια ιπποδύναμη κινητήρα μπορώ να εκκινήσω πχ:

 

α) περίπτωση για ένα κινητήρα 150 h/p έχω 2,85Χ150=577 Α δηλαδή η μπαταρία μου θα πρέπει να μπορεί να μου δώσει 577 amper.

 

β) περίπτωση: Έχω μια μπαταρία που στην θερμοκρασία των -18 C0 μπορεί να μου δώσει 800 Α τότε μπορώ να θέσω σε κίνηση ένα κινητήρα 200 h/p (0,26Χ800=208) .

 

Τέλος πρέπει να προσέξουμε και κάτι άλλο:

Έστω ότι έχουμε μια μπαταρία με χωρητικότητα 120 Α/h η οποία δύναται να μας δώσει συνέχεια 12 Α για 10 ώρες, εάν όμως ζητήσουμε να πάρουμε πολύ περισσότερο ρεύμα διαπιστώνουμε ότι δεν τηρείτε η αναλογία και η μπαταρία συμπεριφέρεται σαν να έχει μικρότερη χωρητικότητα από την ονομαστική και αυτό συμβαίνει γιατί εισέρχονται εσωτερικές απώλειες.

 

 

Γιατί μια μπαταρία καταστρέφεται ή γερνάει

 

Θα εξετάσουμε τις αιτίες που κάνουν μια μπαταρία άχρηστη...

 

1. Εάν αφήσουμε μια μπαταρία για μεγάλο χρονικό διάστημα άδεια ή λίγο φορτισμένη τότε μια χημική αντίδραση στις πλάκες σχηματίζει οξείδια του μολύβδου κρυσταλλικά αδιάλυτα (είναι αυτή η άσπρη σκόνη που συχνά βλέπουμε στους πόλους των μπαταριών εάν δεν προσέχουμε να διατηρούνται καθαροί). Αυτή η ουσία γεμίζει σταδιακά την επιφάνια των μολύβδινων πλακών και εμποδίζει της χημικές αντιδράσεις που αποθηκεύουν ή προσφέρουν ενέργεια.

 

2. Λόγω της διαλυτότητας του μόλυβδου στο νερό και άλλους παράγοντες (διάφορες ακαθαρσίες στο διάλυμα κλπ) η μπαταρία χάνει σιγά σιγά την αποθηκευμένη ενέργεια ώσπου αδειάζει τελείως. Η διαρροή μπορεί να είναι από 1% έως 10% τον μήνα ( 2-4% για μπαταρίες marine 10% για μπαταρίες αυτοκινήτου). Περισσότερο υποφέρουν οι μπαταρίες που χρησιμεύουν για την εκκίνηση κινητήρων αλλά το αυτόματο άδειασμα εξαρτάται από την θερμοκρασία πχ μια μπαταρία στους 38 βαθμούς σε ένα μήνα χάνει περίπου ένα 7% στους 27 βαθμούς 5% ενώ στους 10 βαθμούς μόνο 1% Για τον λόγο αυτό θα πρέπει να φορτίζουμε την μπαταρία μια φορά τον μήνα όταν δεν την χρησιμοποιούμε ώστε να είναι φορτισμένη πάνω από το 80%.

 

3. Οι πλάκες του μόλυβδου είναι κατασκευασμένες έχοντας σειρές από τετράγωνες εσοχές (κυψέλες) μέσα στις οποίες πρεσάρονται τα οξείδια του μόλυβδου με αυτό τον τρόπο οι μπαταρίες γίνονται ποιο ελαφριές αλλά και η επιφάνεια των πλακών με τον ηλεκτρολύτη μεγαλώνει και κατά συνέπεια και η χωρητικότητα. Το μειονέκτημα όμως είναι ότι όταν οι μπαταρίες κακομεταχειρίζονται τότε τα οξείδια ξεκολλούν και κάθονται στον πάτο προκαλώντας βραχυκύκλωμα μεταξύ των στοιχείων.

 

 

Έλεγχος και διάγνωση κατάστασης μπαταρίας

 

Ας αναλύσουμε τώρα τους διάφορους τρόπους διάγνωσης κατάστασης μιας μπαταρίας.

 

1. Το βραχυκύκλωμα ενός ή περισσοτέρων στοιχείων είναι εύκολο να το διαπιστώσουμε. Μετράμε με ένα βολτόμετρο την τάση στους πόλους χωρίς φορτίο και εάν πχ έχουμε ένα στοιχείο βραχυκυκλωμένο αντί για 12 V θα μετρήσουμε 10V εάν έχουμε δυο τότε θα μετρήσουμε 8V κλ. Η μπαταρία αυτή φυσικά είναι για πέταμα.

 

2. Τώρα στην περίπτωση διακοπής της συνέχειας των στοιχείων πάλι η διαπίστωση είναι εύκολη αφού στους πόλους θα έχουμε Τάση (0 Volt). Και στην περίπτωση αυτή η μπαταρία είναι για πέταμα.

 

3. Υπάρχουν όμως και ενδιάμεσες περιπτώσεις όπου οι μπαταρία μπορεί στην μέτρηση να μας δίνει 12 V αλλά κάτω από φορτίο να πέφτουν στα 10V (οι αιτίες που μπορεί να συμβεί αυτό είναι πολλές και δεν αξίζει να τις εξετάσουμε) στην περίπτωση αυτή μπορούμε να προσπαθήσουμε να σώσουμε για λίγο καιρό την μπαταρία φορτίζοντας την πάρα. Τώρα δεν ξέρω κατά πόσο μπορεί και αξίζει τον κόπο κάποιος να μπει σε αυτή την διαδικασία μιας και όπως ανέφερα παραπάνω η περαιτέρω ζωή της μπαταρίας θα είναι μικρή.

 

 

 

ΦΟΡΤΙΣΗ

 

Ας δούμε τώρα τι γίνεται όταν βάζουμε να φορτισθεί μια μπαταρία:

 

Ενώνοντας τα καλώδια του φωτιστή στους πόλους της μπαταρίας αρχίζει η χημική αντίδραση

 

2(96.500)Cοulomb + H2O + 2PbSO4 EQ PbO2 + 2H2SO4 + Pb

 

Θεωρείται κανονική φόρτιση μιας μπαταρίας όταν αυτή γίνεται προσφέροντας ρεύμα ίσο με το 1/10 της χωρητικότητας της για 12 ώρες προσέχοντας η Tάση που εφαρμόζουμε να είναι ανάλογη με τον τύπο της στην θερμοκρασία των 20 βαθμών.

 

Για την Κλασική μπαταρία 13,4 έως 13,8 Volt

 

Για την Μπαταρία Τζέλ 13,8 έως 14,1 Volt

 

Παράδειγμα:

 

Στην κλασικού τύπου μπαταρία μας με χωρητικότητα 175 A/h με ασφάλεια μπορούμε να την φορτίσουμε με 18 Α για 12 ώρες 18Χ12=216 A/h η διαφορά των 41 A/h οφείλεται στο ότι η απόδοση της μπαταρίας δεν είναι 100% άρα ένα ποσό ενέργειας γίνεται θερμότητα .

Η τιμή του ρεύματος επιλέχθηκε (18 Α) είναι ότι καλύτερο ώστε η μπαταρία να φορτισθεί γρήγορα αλλά και με ασφάλεια.

Εάν όμως έχουμε στην διάθεση μας χρόνο μπορούμε να λιγοστέψουμε το ρεύμα φόρτισης και να αυξήσουμε τον χρόνο πχ 8-10 Α για 24-30 ώρες, χωρίς όμως να περάσουμε τις 48 ώρες.

Από τα παραπάνω διαπιστώνουμε ότι τόσο η Τάση φόρτισης όσο και το σωστό ρεύμα είναι βασικά για την ζωή της μπαταρίας μας.

 

 

Πως θα διαπιστώσουμε πόσο γεμάτη είναι η μπαταρία μας

 

Υπάρχουν δυο έμμεσοι τρόποι για να γνωρίσουμε την κατάσταση φόρτισης μιας μπαταρίας

Ο πρώτος μετρώντας την πυκνότητα του ηλεκτρολύτη με ένα όργανο το πυκνόμετρο το οποίο είναι αρκετά φθηνό και ο δεύτερος μετρώντας την τάση στους πόλους.

Για την μέτρηση της πυκνότητας στους 270 C. Ακολουθούμε τον παρακάτω πίνακα

 

Πυκνότητα 1,265 – φόρτιση 100%

 

Πυκνότητα 1,225 – φόρτιση 75%

 

Πυκνότητα 1,190 – φόρτιση 50%

 

Πυκνότητα 1,155 – φόρτιση 25%

 

Πυκνότητα 1,120 – φόρτιση τελείως άδεια

 

Καλό είναι να μετράμε την πυκνότητα όλων των στοιχείων ώστε να είμαστε σίγουροι ότι όλα είναι το ίδιο φορτισμένα.

 

 

Εάν η πρόσβαση στην μπαταρία δεν είναι εύκολη ώστε να μετρήσουμε την πυκνότητα του ηλεκτρολύτη στα στοιχεία

τότε μπορούμε να υπολογίσουμε την κατάσταση μετρώντας την τάση χωρίς φορτία με ένα ηλεκτρονικό βολτόμετρο ακριβείας

 

Φόρτιση 100% 12,6 V

 

Φόρτιση 75% 12,4 V

 

Φόρτιση 50% 12,2 V

 

Φόρτιση 25% 12,0 V

 

Φόρτιση 0 11,8 V

 

Εάν λοιπόν η τάση πέσει κάτω από 1,96 V στο στοιχείο η για μια μπαταρία των 12 V κάτω από 11,8 V σημαίνει ότι η μπαταρία είναι άδεια.

 

Ενας καλυτερος πινακας με ταση/φορτιση:

 

 

 

 

ΚΑΛΗ ΧΡΗΣΗ ΤΗΣ ΜΠΑΤΑΡΙΑΣ

 

Να δούμε τώρα πως πρέπει να μεταχειριζόμαστε με τον καλύτερο τρόπο την μπαταρία μας...

 

 

1. Να μη την αφήνουμε να αδειάσει τελείως(Τάση κάτω από 10,6 Volt) γιατί τότε δημιουργούνται καταστρεπτικές χημικές αντιδράσεις μη αναστρέψιμες

2. Να μη την υπερφορτίζουμε ή να την φορτίζουμε πολύ γρήγορα

3. Να μη της ζητάμε ποτέ πάρα πολύ ρεύμα εκτός από αυτό της εκκίνησης (ο τρόπος δοκιμής της μπαταρίας βραχυκυκλώνοντας με ένα καλώδιο τους πόλους είναι καταστροφή)

4. Να μη μένει παραπάνω από ένα μήνα χωρίς να φορτισθεί

5. Να μη μένει χωρίς ηλεκτρολύτη Θα πρέπει να ελέγχουμε συχνά την στάθμη του ηλεκτρολύτη ώστε να είναι οι πλάκες πάντα σκεπασμένες.

6. Να βρίσκεται σε στεγνό και καθαρό μέρος παρότι το κέλυφος των μπαταριών είναι κατασκευασμένο από μονωτικό υλικό έχει παρατηρηθεί ότι όταν είναι σε νερό ή σε λάδια γράσα κλπ υπάρχει διαρροή ρεύματος

 

Οι μπαταρίες MARINE που ενδιαφέρουν εμάς μπορούν να αντέξουν, εν σχέση με εκείνες των αυτοκινήτων, σε εκφορτίσεις έως και 50% δηλαδή από 100% σε 50% αλλά και να δώσουν αρκετά υψηλά ρεύματα αιχμής για την εκκίνηση.

 

 

ΣΕ ΑΥΤΟ ΤΟ ΣΗΜΕΙΟ ΕΡΧΟΝΤΑΙ ΜΟΝΕΣ ΤΟΥΣ ΟΙ ΠΑΡΑΚΑΤΩ ΕΡΩΤΗΣΕΙΣ:

 

- Πως μπορώ να μεταχειριστώ την μπαταρία μου;

 

- Πότε και πόσο χρησιμοποιώ το οχημα μου;

 

- Τι δυνατότητες αναφόρτισης έχω;

 

 

Φυσικά δεν υπάρχει για όλα αυτά μια και μόνη απάντηση Η ζωή της μπαταρίας μας εξαρτάται από όλες αυτές τις παραμέτρους. Αλλά για να μη μπούμε σε θεωρίες τα οποία δύσκολα γίνονται κατανοητά από τους περισσότερους, θα εξετάσουμε μερικά παραδείγματα:

 

1o παράδειγμα:

Μεταχειρίζομαι το φουσκωτό ένα Σαββατοκύριακο το μήνα και 15 ημέρες στις διακοπές το καλοκαίρι.

Λοιπόν σε ένα χρόνο θα κάνω περίπου 35/50 εκκινήσεις του κινητήρα (για κάθε εκκίνηση ξοδεύω περίπου 1-2 Ah και αδειάζω την μπαταρία μου κατά 5% .Κάθε φορά που αφήνω το φουσκωτό η μπαταρία μου είναι σχεδόν γεμάτη το μεταχειρίζομαι όπως είπαμε μια φορά το μήνα άρα με αυτές τις συνθήκες η μπαταρία θα έχει μεγάλη διάρκεια ζωής περισσότερο από εκείνη του αυτοκινήτου

 

2o παράδειγμα:

Μεταχειρίζομαι το όχημα μου μόνο το καλοκαίρι και παραμένει σταματημένο από τον Νοέμβριο έως τον Μάιο, η μπαταρία μένει χωρίς χρήση για 5 μήνες . Τον Μάιο θα την βρω σχεδόν άδεια ίσως μπορέσει να κάνει μια δύο εκκινήσεις και μετά ο κινητήρας θα την φορτίσει και όλα θα φαίνονται κανονικά. Όμως η ζημιά έχει ήδη γίνει στις πλάκες και η χωρητικότητα της μπαταρίας είναι 40% της ονομαστικής έτσι εάν για κάποιο λογο ο κινητήρας μου δεν πάρει μπρος με την πρώτη και αναγκασθώ να κάνω μερικές προσπάθειες τότε σίγουρα θα μείνω από μπαταρία.

Κάτω από τέτοιες συνθήκες μια μπαταρία καινούργια θα θελήσει άλλαγμα μέσα σε ένα χρόνο.

Εκτός εάν τον χειμώνα κάθε μηνά την φορτίζω ή εάν έχω την δυνατότητα την κρατώ συνέχεια υπό τάση με ένα καλό ηλεκτρονικό φορτιστή.

 

 

Φορτιστές

 

Υπάρχουν πολλοί και σε διαφορετικές τιμές.

Απλοί φορτιστές οι οποίοι αποτελούνται από ένα μετασχηματιστή και μια γέφυρα ανόρθωσης είναι οι πιο οικονομικοί αλλά χρησιμεύουν μόνο για περιστασιακές φορτίσεις κάτω από έλεγχο γιατί δεν έχουν σταθεροποιημένη ούτε την τάση αλλά ούτε και την ένταση του ρεύματος .Μόνο ορισμένοι διαθέτουν θερμική ασφάλεια η οποία διακόπτει το κύκλωμα σε περίπτωση υπερθέρμανσης.

Ορισμένοι λίγο καλύτεροι διαθέτουν δυο σκάλες φόρτισης, χαμηλό και υψηλό ρεύμα καθώς και αμπερόμετρο.

 

 

Αυτόματοι φορτιστές

 

Αυτός ο τύπος των φορτιστών διακόπτει την λειτουργία του αυτόματα όταν η μπαταρία έχει φορτισθεί και η τάση είναι περίπου στα 14 Volt.

 

 

Φορτιστές αυτόματοι με διατήρηση τάσης

 

Είναι ο καλύτερος συνδυασμός τιμής και λειτουργίας. Διατηρούν σταθερή την τάση στην τιμή συντήρησης δηλαδή 13,6 V και δίνουν τόσο ρεύμα όσο ζητά η μπαταρία έως την πλήρη φόρτιση της. Αυτό σημαίνει ότι στην αρχή με την μπαταρία άδεια το ρεύμα είναι αρκετά υψηλό και σιγά σιγά όταν η φόρτιση προχωρά λιγοστεύει. Το καλό με αυτούς τους φορτιστές είναι ότι μπορούμε να τους έχουμε συνέχεια στην μπαταρία και να την διατηρεί συνέχεια φορτισμένη χωρίς πρόβλημα.

 

 

Φορτιστές αυτόματοι ελεγχόμενοι από μικροεπεξεργαστή

 

Είναι φυσικά οι φυσικά οι καλλίτεροι και οι ποιο ακριβοί. Είναι έτσι προγραμματισμένοι ώστε να παρέχουν το απαιτούμενο ρεύμα στην σωστή Τάση όσο προχωρά η φόρτιση, να φορτίζουν την μπαταρία 100% και να την διατηρούν φορτισμένη παρέχοντας το απαιτούμενο ρεύμα με Τάση 13,6 Volt.

 

 

 

Πρακτικός έλεγχος κατάστασης Μπαταριών

 

Υπάρχουν πολλοί τρόποι για να ελέγξουμε την κατάσταση της μπαταρίας μας. Εδώ θα αναφέρω μόνο έναν αρκετά εύκολο τρόπο γιατί διαφορετικά θα χρειαστούμε όργανα ακριβείας όπως πχ ψηφιακό Βολτόμετρο και Αμπερόμετρο.

Για την μέτρηση χρειαζόμαστε δύο ηλεκτρόδια συνδεδεμένα σε ένα βολτόμετρο και μια αντίσταση σύρματος χαμηλής Ωμικής τιμής πχ 1,5 Ω αλλά τουλάχιστον 100 Watt.

Αφήνουμε να περάσει ρεύμα δια μέσου της αντίστασης για λίγο χρόνο και μετράμε την τάση στους πόλους. Εάν παρατηρήσουμε ότι η πτώση τάσης κάτω από αυτό το φορτίο είναι μικρή σημαίνει ότι η μπαταρία μας είναι σε καλή κατάσταση, διαφορετικά χρειάζεται αλλαγή.

Όπως διαπιστώσατε η μέθοδος είναι εμπειρική αλλά νομίζω ότι είναι η μόνη την οποία μπορεί να πραγματοποίηση ένας ερασιτέχνης.

 

 

ΑΝΑΚΕΦΑΛΑΙΩΝΟΝΤΑΣ

 

 

1. ΝΑ ΑΚΟΛΟΥΘΟΥΜΕ ΠΑΝΤΑ ΤΗΝ ΣΩΣΤΗ ΔΙΑΔΙΚΑΣΙΑ ΕΚΚΙΝΗΣΗΣ. ΒΛΕΠΕ ΠΑΡΑΚΑΤΩ!

 

2. Θα πρέπει να αγοράζουμε μπαταρία σύμφωνα με αυτή που προτείνει ο κατασκευαστής του κινητήρα.

 

 

3. Οι πόλοι πρέπει να είναι πάντα καθαροί και πολύ καλά σφιγμένα τα καλώδια.

 

4. Να μη εμπιστευόμαστε ποτέ τις μπαταρίες που έστω και μια φορά έχουν αδειάσει έστω και εάν δείχνουν ότι ξαναγέμισαν.

 

Να μη εμπιστευόμαστε ποτέ τις μπαταρίες που έστω και μια φορά έχουν αδειάσει κάτω από το 50%, έστω και εάν δείχνουν ότι ξαναγέμισαν.
Όπως πολλές φορές ανάφερα παραπάνω εάν η Τάση της μπαταρίας μας πέσει κάτω από 10,8 ο κίνδυνος για την ζωή της μπαταρίας είναι άμεσος.

Γι αυτό δεν πρέπει να αφήνουμε την μπαταρία άδεια περισσότερο από 24 ώρες.

 

 

 


------- SΟS ------- ΣΩΣΤΗ ΔΙΑΔΙΚΑΣΙΑ ΕΚΚΙΝΗΣΗΣ ΤΟ ΚΙΝΗΤΗΡΑ ΜΕ ΜΙΖΑ ------- SΟS -------


Ο σωστός τρόπος εκκίνησης με την χρήση της μίζας, για να μην αποφορτίζουμε έντονα
την μπαταρία και για να μην ζεσταίνουμε την μίζα είναι ο εξής.

Ανοίγουμε τον διακόπτη και αφήνουμε να ολοκληρωθεί ο αυτόματος έλεγχος έναρξης σε όποιες μηχανές υπάρχει.
Με σβηστά φώτα πατάμε το διακόπτη της μίζας για το πολύ 2 δευτερόλεπτα.

Εάν δεν πάρει μπροστά ο κινητήρας μετράμε 10 με 15 δευτερόλεπτα και κάνουμε μια
δεύτερη προσπάθια χωρίς να υπερβούμε τα 2 δευτερόλεπτα συνεχόμενου πατήματος.

Εάν πάλι δεν πάρει μπροστά ο κινητήρας επαναλαμβάνουμε την διαδικασία αναμονής 15 δευτερολέπτων και δοκιμάζουμε πάλι.

Εάν ούτε με την [u]τρίτη[/u] προσπάθεια δεν εκκινήσει ο κινητήρας τότε κλείνουμε τον διακόπτη
και αφήνουμε για 1 λεπτό σίγουρα (ακόμα καλύτερα αν μπορούμε 2 λεπτά)
και επαναλαμβάνουμε την διαδικασία των 3 προσπαθιών.

Εάν και πάλι δεν πάρει μπροστά περνάμε σε φόρτιση της μπαταρίας, οδική βοήθεια ή εκκίνηση
με την χρήση ταχύτητας το οποίο και δεν συστήνεται εκτός από εξαιρετικά αναγκαίες περιπτώσεις.

 

 

 

 

 

Post by: Billgeo